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Abstract — Defect-free large-area inorganic thick-dielectric EL (TDEL) displays using Color by Blue

(CBB) technology have been successfully developed. We have achieved the world’s highest blue-phos-

phor luminance of 900 cd/m2 for a single-pixel device by using CBB and by optimizing the e-beam

gun configuration and the flow rate of H2S in the vacuum chamber. By analyzing the defects on panels

with triple-pattern phosphors and CBB panels, we also found that the number of defects on CBB panels

can be drastically reduced compared with those on triple-pattern panels. The defect-free 17-in. VGA

CBB panels show better characteristics, a high peak luminance of 600 cd/m2 and a high contrast ratio

of 1000:1, compared with those of triple-pattern panels.
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1 Introduction

Recently, flat-panel-display television has entered the TV
marketplace. Although liquid-crystal displays (LCDs) and
plasma-display panels (PDPs) are the dominant flat-panel
technologies in the today’s marketplace, they still have tech-
nological problems as shown in Table 1. Recently, many
researchers and engineers have been developing new flat-
panel-display technologies such as field-emission displays
(FEDs),1 organic light-emitting-diode (OLEDs) displays,2

and inorganic electroluminescent displays (IELDs)3 in
order to realize a hang-on-the-wall TV. We have developed
the world’s first full-color thick-dielectric EL (TDEL) dis-
plays4 and progress in developing large-sized TDEL dis-
plays has been made. Among the new flat-panel displays,
TDEL is the leading candidate for the realization of hang-
on-the-wall TV because of its advantage of light weight.

The development of inorganic EL technology began
with the discovery of high-field electroluminescence in
1936.5 Then various technologies were invented, such as
luminescence from molecular centers, LUMOCEN6; high-
luminance and long-lifetime ac thin-film EL displays7; mul-
ticolor emission from CaS- and SrS-based thin-film EL8;
etc. However, high-luminance full-color EL did not appear
until quite recently because high-luminance blue phosphors
for EL had not yet been developed. Miura et al. have devel-
oped a new blue phosphor, europium-doped barium thioalu-
minate (BaAl2S4:Eu).9 This phosphor has the potential to
produce a practical inorganic EL display. More recently,
iFire Technology reported a high-luminance blue phosphor,
MgxBa1–xAl2S4: Eu,10 which has almost the same potential

as BaAl2S4:Eu. The addition of Mg enables the process tem-
perature to be reduced. A full-color display requires three
colors: red, green, and blue. “Triple-patterned phosphor”
technology, which emits three colors in a pixel, and “Color-
by-White” technology, which changes white light into three
colors by the use of a color filter, can be used to obtain a
full-color display. But they have some problems; for exam-
ple, the process is complex and the efficiency is bad, respec-
tively. Recently, we have developed CBB technology11 by
applying the principle of color conversion technology, which
changes the blue color into red and green colors through
color-changing materials. And we have shown that CBB
technology has some advantages: a simpler process, less
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TABLE 1 — Current state of flat-panel displays.
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expensive, and higher yield. Brighter blue-phosphor materials
are needed in order to make CBB technology practicable.

We also investigated the defects of TDEL panels in
order to improve the display quality, and we have reported
that TDEL panels are tolerant of particle-related defects
introduced during the fabrication processes.12

In this paper, we report on the improvement of the
blue-phosphor performance needed to realize CBB tech-
nology, and present a detailed analysis of the defects of
TDEL panels and the characteristics of high-quality 17-in.
VGA TDEL display panels.

2 Improvement in blue-phosphor performance

It is necessary to develop a blue phosphor with a higher
luminance in order to realize TV application. We have
developed a high-luminous blue phosphor based on euro-
pium-doped barium thioaluminate, “G2" blue.13 This
enabled the achievement of a blue luminance on a 17-in.
panel which was sufficient when combined with the color-
conversion materials, resulting in a white luminance of 600
cd/m2.

Figure 1 shows a schematic of the electron-beam (EB)
evaporation system. The luminance of the blue phosphor
was increased by using an improved system as described
below.

The thickness and composition uniformity of the blue-
phosphor film was improved by increasing the number of

EB guns to four from two; two guns for aluminum sulfide
and two for europium-doped barium sulfide. Figure 2 shows
the thickness and composition uniformity resulting from a
number of two- and four-gun runs. The variations compared
with an average value were derived from a panel (410 × 305
mm) and silicon monitor wafers. The evaporation rate was
about 0.6 nm/sec. The average thickness and Al/Ba ratio
were 400 nm and 3.3, respectively. The improved thickness
and composition uniformity was achieved through the use of
a simpler shadow-mask design made possible by a four-gun
configuration as well as by a higher deposition rate for the
phosphor film on the panel substrate that reduced the con-
centration of the contaminant species from the deposition
atmosphere. The reduction in defect density and the con-
taminant species in the phosphor film was achieved by
improving the deposition from the source material handling
to the unloading of panels from the deposition apparatus.

A further improvement in the phosphor-film charac-
teristics was also achieved by increasing the flow rate of H2S
gas in the vacuum chamber during the phosphor-deposition
process to help ensure that the phosphor material was fully
saturated with sulfur. The photoluminescence (PL) intensi-
ties for different flow rates of H2S gas are shown in Fig. 3.
The X-Y plane view shows a 17-in. panel. The variation in
the PL intensity in a 17-in. panel was decreased from 45%

FIGURE 1 — Electron-beam evaporation system.

FIGURE 2 — Uniformity of  Al/Ba  ratio and  thickness  of the blue
phosphor films (four guns vs. two guns).

FIGURE 3 — PL intensity of blue-phosphor films with different flow rates
of H2S gas.

FIGURE 4 — L–V curves with different flow rates of H2S gas.
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to 20% by using a four-gun configuration with a higher flow
rate of the H2S gas. The use of a higher flow rate for H2S
gas also improved the quality of the G2 blue phosphor film.
We think that the vacancies of the G2 blue phosphor film
were compensated by the sulfur atoms in H2S gas. The data
from the x-ray diffraction (XRD), energy dispersive x-ray
(EDX), and electron spectroscopy for the chemical analysis
(ESCA) supports our estimate. The XRD data showed
improvement in the crystallinity. The EDX and ESCA data
showed a small reduction in the oxygen content in the phos-
phor film. We think that H2S gas also prevented contamina-
tion by oxygen and H2O in the evaporation chamber.

Figure 4 shows the luminance–voltage characteristics
of typical samples for different flow rates of H2S gas during
phosphor deposition. The maximum luminance of the blue
phosphor with a higher flow rate of H2S gas is as high as 900
cd/m2 and it is nearly twice that of the low flow rate of H2S
gas. The driving source is a 240-Hz pulse drive. Table 2
shows that the resulting CIEx, CIEy, and wavelength of
both films are same for each condition.

3 Defects reduction

Figure 5 shows the structure of our TDEL panels for the
combination of conventional triple-pattern technology and
CBB technology. The panels consist of the substrate,
printed row electrode, screen-printed thick-dielectric,
phosphors, upper insulator, ITO, metal column electrode,
and color filters or color-conversion materials (CCM). They
are simple structures and we can produce panels cheaper
than other flat-panel displays because they do not require a
fine structure like that for a TFT-LCD.

Several strategies were employed to detect defects
incorporated into the display structure during fabrication.
Fully processed 17-in. triple-pattern test panels were
inspected at various stages of the process to determine the
types of defects and the spatial distribution of defects at
each stage of the fabrication process, as shown in Fig. 6. We
categorized the defects as “particle,” “dark spot,” and “fiber.”
Particle means a particle-related defect, dark spot means a
defect without an alien substance, and fiber means a fiber-
related defect, respectively. Only defects greater than
30 µm were considered because the space between the ITO
lines was 40 µm. Once a defect was located, it was photo-
graphed and the XY location was recorded. This resulted in
a visual record of how a defect changed in appearance as the
panels were processed through the fabrication process. The
impact of each defect found was thus assessed after full
process fabrication was complete. Scanning electron
microscopy (SEM), focused ion bean (FIB), energy disper-
sive x-ray (EDX), and Auger electron spectroscopy (AES)
were used to investigate a representative sample of each
defect category.

FIGURE 5 — Structure of the TDEL panels using triple pattern technology
and CBB technology.

TABLE 2 — Characteristics of blue phosphors with different flow rates
of H2S gas.

4 Guns

H2S Flow rate H2S: 28sccm H2S: 43sccm

Luminance (L60) (cd/m2) 401 718

Vth (V) 186 178

CIEx 0.14 0.14

CIEy 0.10 0.10

Wavelength (nm) 472 472

(Measured at 240 Hz, 60 V above threshold)

FIGURE 6 — Distribution of different defects on a triple pattern panel.

FIGURE 7 — Distribution of open/short defects on a triple pattern panel.
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Figure 7 shows the open/short map of the image arti-
fact for a triple-pattern panel after all processes. Many
defects, such as particles, fiber dark spots, etc. discovered
during the “inline defect assessment” were seldom found to
affect display image quality. We think that the performance
and image quality of TDEL displays is insensitive to inline
defects introduced during the fabrication process.

Moreover, we produced defect-free panels using CBB
technology11 because the CBB technology has fewer process
steps than traditional triple pattern technology14 as shown in
Fig. 8. The CBB process eliminates two EB or sputter depo-
sitions and three patterning processes. These are replaced
by two simple thick-film print processes. Figure 9 shows the
total number of defects and open/shorts for the triple-pat-
tern panel and CBB panel after all the processes. Fewer
process steps for the CBB technology reduced the number
of defects. From these results, CBB technology will give us
a higher yield during the mass-production stage.

4 Panel performance

The features of the fabricated TDEL panels, both for the
triple-pattern panel and the CBB panel, are summarized in

Table 3. The characteristics of the CBB panel are superior
to those of the triple-pattern panel. Specifically, the defects
in the CBB panel are very few because the CBB technology
has fewer process steps than the triple-pattern technology.
The improvement of the blue-phosphor deposition process
made the peak luminance and the average contrast ratio of
the CBB panel higher. We believe that the CBB panel will
facilitate the realization of a higher yield and lower cost in
the mass-production stage.

Figure 10 shows a photograph of a CBB panel. Few
defects after all the processes were completed were repaired.
Both good image quality and a defect-free panel was
achieved by using CBB technology.

5 Conclusion

Defect-free 17-in. VGA TDEL displays have been success-
fully developed by using Color by Blue (CBB) technology.
The world’s highest blue-phosphor luminance of about 900
cd/m2 for a 240-Hz pulse drive in a single-pixel device has

FIGURE 8 — Process flows of a triple pattern panel and a CBB panel.

FIGURE 9 — Total number of defects on a triple pattern panel and a CBB
panel.

FIGURE 10 — Image of a 17-in. VGA panel using CBB technology.

TABLE 3 — Characteristics of Typical TDEL Panels.
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been achieved by optimizing the EB gun configuration and
the flow rate of H2S in the vacuum chamber. We have de-
veloped a CBB process which has fewer process steps than
that for the triple pattern process. The number of defects on
CBB panels is fewer than that for triple-pattern panels. We
found that characteristics of a CBB panel, such as lumi-
nance and contrast ratio, are superior to those of triple-pat-
tern panels.
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