Материалы раздела: Иродов
Иродов 3.19. Равномерно заряженная очень длинная нить, расположенная по оси круга радиуса R, упирается одним своим концом в его центр. Заряд нити на единицу длины равен λ. Найти поток вектора E через площадь круга. Скачать решение: Скачать решение задачи
Смотреть материал
Иродов 3.18. Найти вектор напряженности электрического поля в центре шара радиуса R, объемная плотность заряда которого ρ = ar, где a — постоянный вектор, r — радиус-вектор, проведенный из центра шара. Скачать решение: Скачать решение задачи
Смотреть материал
Иродов 3.17. Пусть поверхностная плотность заряда на сфере радиуса R зависит от полярного угла ϑ как σ = σ0 cos ϑ, где σ0 — положительная постоянная. Показать, что такое распределение заряда можно представить как результат малого сдвига друг относительно друга двух равномерно заряженных шаров радиуса R, заряды которых одинаковы по модулю и противоположны по знаку. […]
Смотреть материал
Иродов 3.16. Сфера радиуса r заряжена с поверхностной плотностью σ = ar, где a — постоянный вектор, r — радиус-вектор точки сферы относительно ее центра. Найти вектор напряженности электрического поля в центре сферы. Скачать решение: Скачать решение задачи
Смотреть материал
Иродов 3.15. Равномерно заряженная нить, на единицу длины которой приходится заряд λ, имеет конфигурации, показанные на рис. 3.2, а и б. Считая, что радиус закругления R значительно меньше длины нити, найти модуль вектора напряженности электрического поля в точке О. Скачать решение: Скачать решение задачи
Смотреть материал
Иродов 3.14. Очень длинная прямая равномерно заряженная нить имеет заряд λ на единицу длины. Найти модуль и направление вектора напряженности электрического поля в точке, которая отстоит от нити на расстояние y и находится на перпендикуляре к нити, проходящем через один из ее концов. Скачать решение: Скачать решение задачи
Смотреть материал
Иродов 3.13. Находящийся в вакууме тонкий прямой стержень длины 2a заряжен равномерно зарядом q. Найти модуль вектора напряженности электрического поля как функцию расстояния r от центра стержня для точек прямой: а) перпендикулярной к стержню и проходящей через его центр; б) на оси стержня вне его. Исследовать полученные выражения при r >> a. Скачать решение: Скачать […]
Смотреть материал
Иродов 3.12. Тонкое непроводящее кольцо радиуса R заряжено с линейной плотностью λ = λ0 cos φ, где λ0 — постоянная, φ — азимутальный угол. Найти модуль вектора напряженности электрического поля: а) в центре кольца; б) на оси кольца в зависимости от расстояния x до его центра. Исследовать полученное выражение при х >> R. Скачать решение: […]
Смотреть материал
Иродов 3.11. Система состоит из тонкого заряженного проволочного кольца радиуса R и очень длинной равномерно заряженной нити, расположенной по оси кольца так, что один из ее концов совпадает с центром кольца. Последнее имеет заряд q. На единицу длины нити приходится заряд λ. Найти силу взаимодействия кольца и нити. Скачать решение: Скачать решение задачи
Смотреть материал
Иродов 3.10. Точечный заряд q находится в центре тонкого кольца радиуса R, по которому равномерно распределен заряд -q. Найти модуль вектора напряженности электрического поля на оси кольца в точке, отстоящей от центра кольца на расстояние x, если x >> R. Скачать решение: Скачать решение задачи
Смотреть материал