Как уже было сказано выше ортогональное проецирование — это частный случай параллельного проецирования. При ортогональном проецировании проецирующие лучи перпендикулярны к плоскости проекций.
Аппарат такого проецирования состоит из одной плоскости проекций.
Чтобы получить ортогональную проекцию точки А, через неё надо провести проецирующий луч перпендикулярно к П1. Точка А1 называется ортогональной или прямоугольной проекцией точки А.
Чтобы получить ортогональную проекцию А1В1 отрезка АВ, на плоскость П1, необходимо через точки А и В провести проецирующие прямые, перпендикулярные П1. При пересечении проецирующих прямых с плоскостью П1 получатся ортогональные проекции А1 и В1 точек А и В. Соединив ортогональные проекции А1 и В1 получим ортогональную проекцию А1В1 отрезка АВ.
Все свойства параллельного проецирования выполнимы и для ортогонального проецирования. Однако ортогональные проекции обладают ещё некоторыми свойствами.
Свойства ортогонального проецирования:
1. Длина отрезка равна длине его проекции, делённой на косинус угла наклона отрезка к плоскости проекций.
Возьмём прямую АВ и построим её ортогональную проекцию А1В1 на плоскость П1. Если провести прямую АС || А1В1, то из треугольника АВС следует, что |АС| : |АВ| = cos a или |АВ| = |А1В1| : cos a, т. к. |А1В1| = |АС|.
2. Кроме того, для ортогонального проецирования будет справедлива теорема о проецировании прямого угла:
Теорема: Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину.
Доказательство:
Дан прямой угол АВС, у которого по условию прямая ВС АВ и ВС || плоскости проекций П1. По построению прямая ВС к проецирующему лучу ВВ1. Следовательно, прямая ВС к плоскости b (АВхВВ1), т. к. она к двум пересекающимся прямым , лежащим в этой плоскости. По условию прямая В1С1 || ВС, поэтому тоже к плоскости b, т. е. и прямой А1В1 этой плоскости. Следовательно, угол между прямыми А1В1 и В1С1 равен 90°, что и требовалось доказать.
Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении.
Рассмотренные методы проецирования позволяют решить прямую задачу начертательной геометрии, т. е. по оригиналу построить плоский чертёж. Полученные таким образом проекции на одну плоскость дают неполное представление о предмете, его форме и положении в пространстве, т. е. такой чертёж не обладает свойством обратимости.
Чтобы получить обратимый чертеж, т.е. чертеж дающий полное представление о форме, размерах и положении оригинала в пространстве, однокартинный чертеж дополняют. В зависимости от дополнения существуют различные виды чертежей.
- Эпюр Монжа или ортогональные проекции.Суть метода ортогональные (прямоугольных) проекций состоит в том, что оригинал ортогонально проецируют на 2 или 3 взаимно-ортогональные плоскости проекций, а затем совмещают их с плоскостью чертежа.
- Аксонометрический чертеж.Суть аксонометрического чертежа в том, что сначала оригинал жестко связывают с декартовой системой координат OXYZ, ортогонально проецируют его на одну из плоскостей проекций OXY, или OXZ. Затем параллельным проецированием находят параллельную проекцию полученной конструкции: осей координат OX, OY, OZ, вторичной проекции и оригинала.
- Перспективный чертеж.При построении перспективного чертежа сначала строят одну ортогональную проекцию, а затем на картинной плоскости находят центральную проекцию построенной ранее ортогональной проекции и самого оригинала.
- Проекции с числовыми отметками и др.Чтобы получить проекции с числовыми отметками ортогонально проецируют оригинал на плоскость нулевого уровня и указывают расстояние от точек оригинала до этой плоскости.
Более подробно остановимся на изучении прямоугольных проекций и аксонометрическом чертеже.